Table 2. Selected distances (\AA) and angles $\left({ }^{\circ}\right)$
$\mathrm{C}\left(1^{*}\right)$ is the centroid of the $\mathrm{C}(1)-\mathrm{C}(5)$ ring, $\mathrm{C}\left(2^{*}\right)$ is the centroid of the $\mathrm{C}(7)-\mathrm{C}(11)$ ring.

$\mathrm{Ti}(1)-\mathrm{Cl}(1)$	2.279 (2)	$\mathrm{Ti}(2)-\mathrm{Cl}(3) \quad 2.282$	2.282 (2)
$\mathrm{Ti}(1)-\mathrm{Cl}(2)$	2.295 (2)	$\mathrm{Ti}(2)-\mathrm{Cl}(4) \quad 2.292$	2.292 (2)
$\mathrm{Ti}(1)-\mathrm{N}(1)$	2.121 (4)	$\mathrm{Ti}(2)-\mathrm{N}(1) \quad 2.12$	2.128 (4)
$\mathrm{Ti}(1)-\mathrm{N}(4)$	2.148 (4)	$\mathrm{Ti}(2)-\mathrm{N}(4) \quad 2.11$	2.112 (4)
$\mathrm{Ti}(1)-\mathrm{C}(1)$	2.327 (7)	$\mathrm{Ti}(2)-\mathrm{C}(7) \quad 2.336$	2.336 (6)
$\mathrm{Ti}(1)-\mathrm{C}(2)$	2.321 (8)	$\mathrm{Ti}(2)-\mathrm{C}(8) \quad 2.313$	2.313 (7)
$\mathrm{Ti}(1)-\mathrm{C}(3)$	2.308 (9)	$\mathrm{Ti}(2)-\mathrm{C}(9) \quad 2.30$	2.308 (8)
$\mathrm{Ti}(1)-\mathrm{C}(4)$	2.317 (7)	$\mathrm{Ti}(2)-\mathrm{C}(10) \quad 2.327$	2.327 (6)
$\mathrm{Ti}(1)-\mathrm{C}(5)$	2.367 (7)	$\mathrm{Ti}(2)-\mathrm{C}(11) \quad 2.373$	2.373 (6)
$\mathrm{Ti}(1)-\mathrm{C}\left(1^{*}\right)$	2.026	$\mathrm{Ti}(2)-\mathrm{C}\left(2^{*}\right) \quad 2.014$	2.014
$\mathrm{N}(1)-\mathrm{N}(2)$	1.225 (7)	$\mathrm{N}(4)-\mathrm{N}(5) \quad 1.22$	1.222 (7)
$\mathrm{N}(2)$ - N (3)	1.136 (7)	$\mathrm{N}(5)-\mathrm{N}(6) \quad 1.12$	1.123 (7)
$\mathrm{Ti}(1) \cdots \mathrm{T}$ (2)	3.524 (1)	$\mathrm{N}(1) \cdots \mathrm{N}(4) \quad 2.38$	2.383 (7)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(2)$	90.96 (7)	$\mathrm{Cl}(3)-\mathrm{Ti}(2)-\mathrm{Cl}(4)$	90.83 (6)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)$	133.0 (1)	$\mathrm{Cl}(4)-\mathrm{Ti}(2)-\mathrm{N}(1)$	134.3 (1)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{N}(4)$	84.0 (1)	$\mathrm{Cl}(4)-\mathrm{Ti}(2)-\mathrm{N}(4)$	84.5 (1)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{N}(4)$	136.0 (1)	$\mathrm{Cl}(3)-\mathrm{Ti}(2)-\mathrm{N}(4)$	134.9 (1)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)$	85.2 (1)	$\mathrm{Cl}(3)-\mathrm{Ti}(2)-\mathrm{N}(1)$	84.3 (1)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{C}\left(1^{*}\right)$	114.4	$\mathrm{Cl}(3)-\mathrm{Ti}(2)-\mathrm{C}\left(2^{*}\right)$	112.1
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{C}\left(1^{*}\right)$	111.2	$\mathrm{Cl}(4)-\mathrm{Ti}(2)-\mathrm{C}\left(2^{*}\right)$	111.2
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{C}\left(1^{*}\right)$	110.6	$\mathrm{N}(1)-\mathrm{Ti}(2)-\mathrm{C}\left(2^{*}\right)$	112.7
$\mathrm{N}(4)-\mathrm{Ti}(1)-\mathrm{C}\left(1^{*}\right)$	110.6	$\mathrm{N}(4)-\mathrm{Ti}(2)-\mathrm{C}\left(2^{*}\right)$	111.3
Average	111.7	Average	111.8
$\mathrm{N}(1)-\mathrm{Ti}(1)-\mathrm{N}(4)$	67.9 (2)	$\mathrm{N}(1)-\mathrm{Ti}(2)-\mathrm{N}(4)$	68.3 (2)
$\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	122.9 (3)	$\mathrm{Ti}(2)-\mathrm{N}(1)-\mathrm{N}(2)$	124.9 (3)
$\mathrm{Ti}(1)-\mathrm{N}(4)-\mathrm{N}(5)$	123.8 (3)	$\mathrm{Ti}(2)-\mathrm{N}(4)-\mathrm{N}(5)$	124.5 (3)
$\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{Ti}(2)$	112.0 (2)	$\mathrm{Ti}(1)-\mathrm{N}(4)-\mathrm{Ti}(2)$	111.7 (2)
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{N}(3)$	179.3 (5)	$\mathrm{N}(4)-\mathrm{N}(5)-\mathrm{N}(6)$	179.6 (5)
$\mathrm{N}(1) \cdots \mathrm{N}(4)-\mathrm{N}(5)$	179.3 (3)	$\mathrm{N}(4) \cdots \mathrm{N}(1)-\mathrm{N}(2)$	177.9 (4)
$\mathrm{N}(4)-\mathrm{Ti}(2)-\mathrm{N}(1)-\mathrm{Ti}(1) \quad 2.0$ (2)			(1) -55.9 (3)
$\mathrm{Cl}(1)-\mathrm{Ti}(1)-\mathrm{N}(1)-$	$\mathrm{Ti}(2)-59.6$ (3)	$\begin{aligned} & \mathrm{Cl}(1)-\mathrm{Ti}(2)-\mathrm{N}(1)-\mathrm{Ti}(1) \\ & \mathrm{C}\left(1^{*}\right)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{T}(2) \end{aligned}$	i(2) $\quad 102.7$ (2)
$\mathrm{Cl}(2)-\mathrm{Ti}(1)-\mathrm{N}(1)-\mathrm{Ti}(2) \quad-146.5$ (2)		$\mathrm{C}\left(2^{*}\right)-\mathrm{Ti}(2)-\mathrm{N}(1)-\mathrm{Ti}(1)$	i(1) 107.0 (2)
$\mathrm{Cl}(3)-\mathrm{Ti}(2)-\mathrm{N}(1)-\mathrm{Ti}(1) \quad-141.5$ (2)			

We thank the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work, and the College of Art and Sciences for support of the X-ray crystallographic facilities.

References

Choukroun, R., Gervais, D. \& Dilworth, J. R. (1979). Transition Met. Chem. 4, 249-251.
Dyck, W.-M., Dehnicke, K., Weller, F. \& Müller, U. (1980). Z. Anorg. Allg. Chem. 470, 89-94.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis, User's Manual. Enraf-Nonius, Delft, The Netherlands.
Gil, E. R. de, de Burguera, M., Rivera, A. V. \& Maxfield, P. (1977). Acta Cryst. B33, 578-579.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Müller, U., Dyck, W. M. \& Dehnicke, K. (1980). Z. Anorg. Allg. Chem. 468, 172-178.
Poli, R. (1991). Chem. Rev. 91, 509-551.
Vrieze, K. \& van Koten, G. (1987). Comprehensive Coordination Chemistry - The Synthesis, Reactions, Properties and Applications of Coordination Compounds, Vol. 2, edited by G. Wilkinson, R. D. Gillard \& J. A. McCleverty, pp. 225-244. Oxford: Pergamon Press.
Wellern, H.-O. \& MÜller, U. (1976). Chem. Ber. 109, 30393046.

Acta Cryst. (1992). C48, 1839-1841

Structure of Triphenyltin Chloride-Triphenylphosphine Oxide (1/1) Complex

By Seik Weng Ng
Institute of Advanced Studies, University of Malaya, 59100 Kuala Lumpur, Malaysia
and V. G. Kumar Das
Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia

(Received 21 October 1991; accepted 27 January 1992)

Abstract

Chloro(triphenyl)(triphenylphosphine oxide)tin, $\left[\mathrm{SnCl}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PO}\right\}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right], \quad M_{r}=663.76$, monoclinic, $P 2_{1} / c, a=10.671$ (1),$b=11.777$ (2), $c=$ 25.494 (1) $\AA, \beta=98.148(5)^{\circ}, V=3171.5$ (7) $\AA^{3}, Z=$ 4, $D_{x}=1.390 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=$ $9.67 \mathrm{~cm}^{-1}, F(000)=1344, T=298 \mathrm{~K}, R=0.033$ for $3327[I \geq 3 \sigma(I)]$ reflections. Triphenyltin chloride forms a molecular complex with triphenylphosphine oxide in which $\mathrm{Sn}-\mathrm{Cl}=2.470$ (2) and $\mathrm{Sn}-\mathrm{O}=$ 2.391 (4) \AA. The geometry of Sn is a trans $-\mathrm{C}_{3} \mathrm{SnClO}$ trigonal bipyramid.

Experimental. Triphenyltin chloride and triphenylphosphine were dissolved in equimolar amounts in chloroform; slow evaporation of the solvent furnished clear crystals of the complex. A crystal measuring approximately $0.14 \times 0.22 \times 0.25 \mathrm{~mm}$ was used in the structure analysis. Measurements were performed on an Enraf-Nonius diffractometer. Accurate unit-cell parameters were obtained from the 25 most intense reflections in the $13 \leq 2 \theta \leq 15^{\circ}$ thin shell. Intensity data were gathered to a Bragg angle of $50^{\circ}(0 \leq h \leq 12,0 \leq k \leq 14,-30 \leq l \leq 30)$ by © 1992 International Union of Crystallography

Table 1. Positional parameters and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$\begin{aligned} B_{\mathrm{eq}}=(4 / 3) & {\left[a^{2} B(1,1)+b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)\right.} \\ & +a c(\cos \beta) B(1,3)+b c(\cos \alpha) B(2,3)] . \end{aligned}$				
	x	y	z	$B_{\text {ca }}$
Sn	0.19699 (3)	0.00038 (4)	0.15623 (1)	3.406 (6)
Cl	0.1401 (2)	-0.1616 (1)	0.20973 (6)	5.33 (4)
P	0.2593 (1)	0.2812 (1)	0.09021 (5)	3.00 (3)
0	0.2547 (3)	0.1594 (3)	0.1064 (1)	3.71 (8)
C(1)	0.3031 (5)	-0.0942 (5)	0.1077 (2)	3.7 (1)
C(2)	0.2690 (6)	-0.2040 (5)	0.0932 (2)	5.0 (1)
C(3)	0.3373 (7)	-0.2664 (6)	0.0611 (3)	7.2 (2)
C(4)	0.4392 (7)	-0.2219 (6)	0.0429 (3)	7.2 (2)
C(5)	0.4757 (7)	-0.1149 (7)	0.0569 (3)	7.1 (2)
C(6)	0.4093 (5)	-0.0520 (6)	0.0886 (3)	5.1 (1)
C(7)	0.2888 (5)	0.0945 (5)	0.2206 (2)	4.0 (1)
C(8)	0.4148 (7)	0.0783 (7)	0.2399 (3)	6.8 (2)
C(9)	0.4772 (9)	0.1459 (8)	0.2794 (3)	10.2 (3)
C(10)	0.414 (1)	0.2276 (8)	0.3014 (3)	11.6 (3)
C(11)	0.291 (1)	0.2465 (7)	0.2839 (3)	9.1 (3)
C(12)	0.2285 (7)	0.1803 (5)	0.2441 (3)	6.0 (2)
C(13)	0.0067 (5)	0.0393 (4)	0.1250 (2)	3.7 (1)
C(14)	-0.0277 (6)	0.0650 (5)	0.0717 (2)	4.5 (1)
C(15)	-0.1490 (6)	0.0973 (6)	0.0523 (3)	6.0 (2)
C(16)	-0.2381 (7)	0.1059 (7)	0.0852 (3)	7.3 (2)
C(17)	-0.2075 (6)	0.0795 (7)	0.1372 (3)	7.0 (2)
C(18)	-0.0868 (6)	0.0459 (6)	0.1568 (2)	5.1 (1)
C(19)	0.1697 (5)	0.3718 (4)	0.1272 (2)	3.2 (1)
C(20)	0.2145 (6)	0.4720 (5)	0.1497 (2)	5.1 (1)
C(21)	0.1433 (7)	0.5340 (6)	0.1812 (3)	6.3 (2)
C(22)	0.0290 (6)	0.4956 (6)	0.1901 (2)	6.3 (1)
C(23)	-0.0162 (6)	0.3959 (6)	0.1682 (3)	5.7 (2)
C(24)	0.0516 (5)	0.3350 (5)	0.1366 (2)	4.7 (1)
C(25)	0.1999 (4)	0.2970 (4)	0.0212 (2)	3.1 (1)
C(26)	0.2135 (5)	0.2076 (5)	-0.0124 (2)	4.1 (1)
C(27)	0.1712 (6)	0.2170 (6)	-0.0657 (2)	5.3 (2)
C(28)	0.1149 (6)	0.3130 (6)	-0.0861 (2)	5.4 (2)
C(29)	0.1001 (6)	0.4029 (6)	-0.0533 (2)	5.9 (2)
C(30)	0.1435 (6)	0.3962 (5)	0.0002 (2)	4.6 (1)
C(31)	0.4167 (5)	0.3376 (4)	0.1014 (2)	3.3 (1)
C(32)	0.4589 (5)	0.4188 (6)	0.0688 (2)	5.0 (1)
C(33)	0.5748 (6)	0.4720 (6)	0.0834 (3)	6.6 (2)
C(34)	0.6477 (6)	0.4421 (7)	0.1289 (3)	7.0 (2)
C(35)	0.6088 (6)	0.3608 (6)	0.1613 (3)	6.2 (2)
C(36)	0.4933 (5)	0.3083 (6)	0.1474 (3)	4.9 (1)

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Sn}-\mathrm{Cl}$	$2.470(2)$	$\mathrm{Sn}-\mathrm{O}$	$2.391(4)$
$\mathrm{Sn}-\mathrm{C}(1)$	$2.109(6)$	$\mathrm{Sn}-\mathrm{C} 7$	$2.103(6)$
$\mathrm{Sn}-\mathrm{C}(13)$	$2.124(6)$	$\mathrm{P}-\mathrm{O}$	$1.496(4)$
$\mathrm{P}-\mathrm{C}(19)$	$1.789(5)$	$\mathrm{P}-\mathrm{C} 25$	$1.793(5)$
$\mathrm{P}-\mathrm{C}(31)$	$1.791(5)$		
$\mathrm{C}-\mathrm{Sn}-\mathrm{O}$	$178.6(1)$	$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(1)$	$96.3(2)$
$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(7)$	$95.7(2)$	$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(13)$	$94.4(2)$
$\mathrm{O}-\mathrm{Sn}-\mathrm{C}(1)$	$84.4(2)$	$\mathrm{O}-\mathrm{Sn}-\mathrm{C}(7)$	$82.8(2)$
$\mathrm{O}-\mathrm{Sn}-\mathrm{C}(13)$	$86.4(2)$	$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{C}(7)$	$120.4(2)$
$\mathrm{C}(1-\mathrm{Sn}-\mathrm{C}(13)$	$117.3(2)$	$\mathrm{C}(7)-\mathrm{Sn}-\mathrm{C}(13)$	$119.6(2)$
$\mathrm{O}-\mathrm{P}-\mathrm{C}(19)$	$112.7(2)$	$\mathrm{O}-\mathrm{P}-\mathrm{C}(25)$	$110.5(2)$
$\mathrm{O}-\mathrm{P}-\mathrm{C}(31)$	$112.3(2)$	$\mathrm{C}(19)-\mathrm{P}-\mathrm{C}(25)$	$108.3(2)$
$\mathrm{C}(19)-\mathrm{P}-\mathrm{C}(31)$	$104.7(2)$	$\mathrm{C}(25)-\mathrm{P}-\mathrm{C}(31)$	$108.1(2)$
$\mathrm{Sn}-\mathrm{O}-\mathrm{P}$	$156.8(2)$		

using the $\theta / 2 \theta$ scan technique. 5880 data were measured, of which 5244 were unique and 3327 satisfying the $I \geq 3 \sigma(I)$ criterion were used in the refinement. Three reflections $(0,0, \overline{16}, 1,1, \overline{17}, 606)$ monitored hourly showed negligible decrease in intensity. The structure was solved by using MULTAN (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982). An empirical (Fourier series) absorption correction (Walker \& Stuart, 1983) was applied after the non- H atoms had been refined isotropically. The non-H atoms were anisotropically refined; 361 variables were refined. H atoms were placed at calculated
positions $\left(\mathrm{C}-\mathrm{H}=0.95 \AA, \quad B=5 \AA^{2}\right)$ and were allowed to ride on their parent C atoms. The refinement, based on F, converged at $R=0.033, w R$ $=0.038\left\{w=\left[\sigma(F)^{2}+(0.02 F)^{2}+1\right]^{-1}\right\} ; \quad S=0.447$; $\Delta / \sigma=0.01$. The maximum and minimum $\Delta \rho$ were 0.34 (5) and $-0.17(5)$ e \AA^{-3}. All computations were performed on a MicroVAX minicomputer with the MolEN (Fair, 1990) structure determination package. Scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV, Tables 2.2B and 2.3.1). The atomic coordinates are listed in Table 1;* selected bond distances and angles are listed in Table 2. The atom-labeling scheme is shown in Fig. 1.

Related literature. The $\mathrm{Sn}-\mathrm{Cl}$ bond in triphenyltin chloride, which is 2.32 (2) \AA (Bokii, Zakharova \& Struchkov, 1970), has been lengthened to 2.470 (2) \AA in the triphenylphosphine oxide complex. The coordination around Sn in the complex is similar to that in the 1,2 -(diphenylphosphinyl)ethylene adducts (Pelizzi \& Pelizzi, 1980a,b). The $\mathrm{Sn}-\mathrm{O}-\mathrm{P}$ angle in

* Lists of structure factors, anisotropic thermal parameters, bond distances and angles, and H -atom positional parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55102 (41 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS0567]

Fig 1. The labeling scheme for triphenyltin chloride-triphenylphosphine oxide.
triphenyltin halide-phosphine oxide complexes is large, typically about 156° (Rheingold, Ng \& Zuckerman, 1984).

We thank the University of Malaya (PJP 152/91) and the National Science Council for Research and Development (grant No. 2-04-07-06) for supporting this work.

References

BokiI, N. G., Zakharova, G. N. \& Struchkov, Yu. T. (1970). J. Struct. Chem. (Engl. Transl.) 11, 895-902.

Falr, C. K. (1990). MolEN Structure Determination System. Delft Instruments, X-ray Diffraction B. V., Röntgenweg 1, 2624 BD Delft, The Netherlands.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Pelizzi, C. \& Pelizzi, G. (1980a). Inorg. Nucl. Chem. Lett. 16, 451-454.
Pelizzi, C. \& Pelizzi, G. (1980b). J. Organomet. Chem. 202, 411-419.
Rheingold, A. L., Ng, S. W. \& Zuckerman, J. J. (1984). Inorg. Chim. Acta, 86, 179-193.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1992). C48, 1841-1842

Carbonatobis(1,10-phenanthroline)cobalt(III) Perchlorate

By C. A. McAuliffe and R. G. Pritchard
Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England

and M. R. Bermejo, A. Garcia-Vazquez, A. Macias, J. Sanmartín, J. Romero and A. Sousa

Departamento de Quimica Inorganica, Universidad de Santiago de Compostela, 15706 Santiago, Spain
(Received 25 May 1991; accepted 12 February 1992)

Abstract

Co}\left(\mathrm{CO}_{3}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right), \quad M_{r}=578.81\), monoclinic, $P 2_{1} / n, a=11.732$ (5), $b=12.404$ (4), $c=$ 16.194 (5) $\AA, \beta=108.80$ (3) ${ }^{\circ}, V=2231$ (1) $\AA^{3}, Z=$ $4, D_{x}=1.723 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu=$ $0.944 \mathrm{~mm}^{-1}, F(000)=1176, T=293 \mathrm{~K}, R=0.063$, 2547 unique reflexions $[I \geq 2 \sigma(I)$]. The cation has typical non-crystallographic twofold symmetry with the Co environment approximating a cis octahedron. There is a tendency for $\mathrm{Co}-\mathrm{N}$ bonds trans to O atoms to be slightly longer than the cis bonds [1.936 (5), 1.951 (5) \AA cf 1.922 (5), 1.931 (5) \AA]; however, both coordinated carbonate O atoms are equidistant from $\mathrm{Co}[1.889$ (4), 1.886 (4) \AA].

Experimental. The compound was obtained during the synthesis of Co complexes of $2(1 \mathrm{H})$-pyridone by use of the electrochemical method proposed by Tuck (Habeeb, Tuck \& Walters, 1978). The electrochemical oxidation of a Co anode in an acetonitrile solution (70 ml) containing 1,10-phenanthroline $(0.25 \mathrm{~g}), 2(1 \mathrm{H})$-pyridone (0.20 g) and tetramethylammonium perchlorate ($c a 10 \mathrm{mg}$) led to the formation of a brown solid. Crystals of the title compound, suitable for X-ray studies, were obtained by slow evaporation of the mother liquor at room temperature.

A crystal of dimensions $0.3 \times 0.3 \times 0.1 \mathrm{~mm}$ was used for data collection on a Rigaku AFC-6S diffractometer, with graphite-monochromated Mo $K \alpha$ radiation. Unit-cell dimensions were determined from the setting angles of 25 accurately centered reflexions ($12.4 \leq 2 \theta \leq 28.3^{\circ}$). Reflexions were measured using the $\omega-2 \theta$ scan mode with ω-scan width $(1.26+0.30 \tan \theta)^{\circ}$ and scan speed of $8^{\circ} \min ^{-1}$, with up to two additional scans of weak reflexions $[I<$ $10 \sigma(I)] ; 0 \leq h \leq 13,0 \leq k \leq 14,-18 \leq l \leq 18,0 \leq \theta$ $\leq 25^{\circ} .4354$ reflexions were measured, of which 4140 were unique ($R_{\text {int }}=0.072$) and 2547 observed [$I \geq$ $2 \sigma(I)$]. Intensity standards ($025,033,132$) measured every 150 reflexions showed no decline. Lp and absorption (maximum/minimum transmission $0.86 / 1.0$) corrections were applied. MITHRIL (Gilmore, 1984) was used to solve the phase problem. All non-H atoms were found in Fourier maps, H atoms from ΔF synthesis. Full-matrix leastsquares refinement was based on F using TEXSAN (Molecular Structure Corporation, 1985) crystallographic software. Final $R=0.063\{w R=0.062, w=$ $\left.1 /\left[\sigma^{2}\left(F_{o}\right)+\left(0.03 F_{o}\right)^{2}\right]\right\}, S=2.01$. Anisotropic thermal parameters were refined for heavier atoms, isotropic for H atoms. Maximum fluctuation in the final ΔF map was in the range -0.41 to $0.71 \mathrm{e}^{\AA^{-3}}$. Maxi-
© 1992 International Union of Crystallography

